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Mechanism Design

• What is mechanism design?

• It can be seen as reverse game theory

• Main goal: design the rules of a game so as to

• avoid strategic behavior by the players

• and more generally, enforce a certain behavior for the players or 
other desirable properties

• Applied to problems where a “social choice” needs to be 
made

• i.e., an aggregation of individual preferences to a  single joint 
decision

• strategic behavior = declaring false preferences in order to 
gain a higher utility
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Examples

• Elections

• Parliamentary elections, committee elections, council 
elections, etc

• A set of voters

• A set of candidates

• Each voter expresses preferences according to the 
election rules

• E.g., by specifying his single top choice, or by specifying his first 
few choices, or by submitting a full ranking of the candidates

• Social choice: can be a single candidate (single-winner 
election) or a set of candidates (multi-winner election) or 
a ranking of the candidates
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Examples

• Auctions

• An auctioneer with some items for sale

• A set of bidders express preferences (offers) over items

• Or combinations of items

• Preferences are submitted either through a valuation 
function, or according to some bidding language

• Social choice: allocation of items to the bidders
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Examples

• Government policy making and referenda

• A municipality is considering implementing a public 
project

• Q1: Should we build a new road, a library or a tennis 
court?

• Q2: If we build a library where shall we build it?

• Citizens can express their preferences in an online survey 
or a referendum

• Social choice: the decision of the municipality on what 
and where to implement
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Specifying preferences

• In all the examples, the players need to submit their 
preferences in some form

• Representation of preferences can be done by

• A valuation function (specifying a value for each possible 
outcome)

• A ranking (an ordering on possible outcomes)

• An approval set (which outcomes are approved) 

• Possible conflict between increased expressiveness vs 
complexity of decision problem
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Single-item Auctions
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Set of players
N = {1, 2, …, n}

1 indivisible good

Auctions

8

https://www.fcc.gov/about-fcc/fcc-initiatives/incentive-auctions


Auctions

• A means of conducting transactions since antiquity

• First references of auctions date back to ancient Athens 
and Babylon

• Modern applications:

• Art works

• Stamps

• Flowers (Netherlands)

• Spectrum licences

• Other govermental licences

• Pollution rights

• Google ads

• eBay

• Bonds

• ...
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Auctions

• Earlier, the most popular types of auctions were

• The English auction

• The price keeps increasing in small increments

• Gradually bidders drop out till there is only one winner left

• The Dutch auction

• The price starts at +∞ (i.e., at some very high price) and keeps 
decreasing

• Until there exists someone willing to offer the current price

• There exist also many variants regarding their practical 
implementation

• These correspond to ascending or descending price 
trajectories
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Sealed bid auctions

• Sealed bid: We think of every bidder submitting his bid in an 
envelope, without other players seeing it

- It does not really have to be an envelope, bids can be submitted 
electronically

- The main assumption is that it is submitted in a way that other 
bidders cannot see it

• After collecting the bids, the auctioneer needs to decide:

- Who wins the item?

• Easy! Should be the guy with the highest bid 

• Yes in most cases, but not always

- How much should the winner pay?

• Not so clear
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Sealed bid auctions

Why do we view auctions as games?

• We assume every player has a valuation vi for obtaining the good

• Available strategies: each bidder is asked to submit a bid bi

• bi  [0, ∞)

• Infinite number of strategies

• The submitted bid bi may differ from the real value vi of bidder i
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First price auction

Auction rules

• Let b = (b1, b2,..., bn) the vector of all the offers

• Winner: The bidder with the highest offer

• In case of ties: We assume the winner is the bidder with the lowest 
index (not important for the analysis)

• E.g. if there is a tie among bidder 2 and bidder 4, the winner is 
bidder 2

• Winner’s payment: the bid declared by the winner

• Utility function of bidder i, 
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ui(b) =
vi – bi , if i is the winner

0, otherwise



Incentives in the first price auction

Analysis of first price auctions

• There are too many Nash equilibria

• Can we predict bidding behavior?

Is some equilibrium more likely to occur?

• Hard to tell what exactly will happen in practice but we can 
still make some conclusions for first price auctions

Observation: Suppose that v1 ≥ v2 ≥ v3 ... ≥ vn. Then the profile
(v2, v2, v3, ..., vn) is a Nash equilibrium

Corollary: The first price auction provides incentives to 
bidders to hide their true value

•This is highly undesirable when v1 - v2 is large 
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Auction mechanisms

We would like to explore alternative payment rules with better 
properties

Definition: For the single-item setting, an auction mechanism 
receives as input the bidding vector b = (b1, b2,..., bn) and 
consists of

– an allocation algorithm (who wins the item)

– a payment algorithm (how much does the winner pay)

Most mechanisms satisfy individual rationality:

• Non-winners do not pay anything

• If the winner is bidder i, her payment will not exceed bi (it is guaranteed 
that no-one will pay more than what she declared)
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Auction mechanisms

Aligning Incentives

• Ideally, we would like mechanisms that do not provide 
incentives for strategic behavior

• How do we even define this mathematically?

An attempt:

Definition: A mechanism is called truthful (or strategyproof, or 
incentive compatible) if for every bidder i, and for every profile 
b-i of the other bidders, it is a dominant strategy for i to 
declare her real value vi, i.e., it holds that

ui(vi, b-i) ≥ ui(b’, b-i) for every b’ ≠ vi
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Auction mechanisms

•In a truthful mechanism, every rational agent knows what to 
play, independently of what the other bidders are doing

•It is a win-win situation:

• The auctioneer knows that players should not strategize

• The bidders also know that they should not spend time 
on trying to find a different strategy

•Very powerful property for a mechanism

•Fact: The first-price mechanism is not truthful

Are there truthful mechanisms?
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The 2nd price mechanism
(Vickrey auction)

[Vickrey ’61]

•Allocation algorithm: same as before, the bidder with the 
highest offer

• In case of ties: we assume the winner is the bidder with 
the lowest index

•Payment algorithm: the winner pays the 2nd highest bid

•Hence, the auctioneer offers a discount to the winner

Observation: the payment does not depend on the winner’s 
bid!

• The bid of each player determines if he wins or not, but not what he 
will pay
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The 2nd price mechanism
(Vickrey auction)

[Vickrey ’61] (Nobel prize in economics, 1996)

•Theorem: The 2nd price auction is a truthful mechanism

Proof sketch:

•Fix a bidder i, and let b-i be an arbitrary bidding profile for the 
rest of the players

•Let b* = maxj≠i bj

•Consider now all possible cases for the final utility of bidder i, 
if he plays vi

- vi <  b*

- vi >  b*

- vi =  b*

- In all these different cases, we can prove that bidder i does not 
become better off by deviating to another strategy 20



Optimization objectives

What do we want to optimize in an auction?

Usual objectives: 

•Social welfare (the total welfare produced for the involved entities) 

•Revenue (the payment received by the auctioneer)

We will focus on social welfare
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Optimization objectives

What do we want to optimize in an auction?

Definition: The utilitarian social welfare produced by a bidding 
vector b is SW(b) = Σi ui(b)

•The summation includes the auctioneer’s utility (= the auctioneer’s 
payment)

•The auctioneer’s payment cancels out with the winner’s payment

➢For the single-item setting, SW(b) = the value of the winner 
for the item

➢An auction is welfare maximizing if it always produces an 
allocation with optimal social welfare when bidders are 
truthful
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Vickrey auction: an ideal auction format

Summing up:

Theorem: The 2nd price auction is

•truthful [incentive guarantees]

•welfare maximizing [economic performance guarantees]

•implementable in polynomial time [computational 
performance guarantees]

Even though the valuations are private information to the bidders, the 
Vickrey auction solves the welfare maximization problem as if the 
valuations were known
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Generalizations to single-parameter 
environments
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Single-parameter mechanisms

• In many cases, we do not have a single item to sell, but 
multiple items

• But still, the valuation of a bidder could be determined by a 
single number (e.g., value per unit)

• Note: the valuation function may depend on various other 
parameters, but we assume only a single parameter is 
private information to the bidder

- The other parameters may be publicly known information

• We can treat all these settings in a unified manner

• Our focus: Direct revelation mechanisms

- The mechanism asks each bidder to submit the 
parameter that completely determines her valuation 
function 25



Examples of single-parameter 
environments

•Single-item auctions:
• One item for sale

• each bidder is asked to submit his value for acquiring the item

•k-item unit-demand auctions
• k identical items for sale 

• each bidder submits his value per unit and can win at most one unit

•Knapsack auctions
• k identical items, each bidder has a value for obtaining a certain number 

of units

•Single-minded auctions
• a set of (non-identical) items for sale

• each bidder is interested in acquiring a specific subset of items (known to 
the mechanism)

• Each bidder submits his value for the set she desires 26



Examples of single-parameter 
environments

•Sponsored search auctions
• multiple advertising slots available, arranged from top to bottom

• each bidder interested in acquiring as high a slot as possible

• each bidder submits his value per click

•Public project mechanisms
• deciding whether to build a public project (e.g., a park) 

• each bidder submits his value for having the project built  

27

In all these settings, we can have multiple winners in the 
auction



Some Notation

•Suppose we have n players

•Let vi be the parameter that is private information to player i
- Usually vi corresponds to value per unit, or value obtained at the 

desirable outcome, or maximum amount willing to pay (dependent on 
the context) 

General form of direct-revelation mechanisms for single-parameter 
problems:

•Input: The bidding vector b = (b1,…, bn) by the players
- each bi may differ from vi

•Allocation rule: Choose an allocation x(b) = (x1(b), x2(b),…, xn(b))
- xi(b) = number of units received by pl. i or more generally the decision 

on what is allocated to i 

•Payment rule: p(b) = (p1(b), p2(b),…, pn(b))
- pi(b) = payment for bidder i 28



Some Notation

•We will use (x, p) to refer to a mechanism with allocation function 
x, and payment function p

•Final utility of bidder i in a mechanism M = (x, p):
- ui(b) = vi xi(b) - pi(b)

- Quasi-linear form of utility functions

•For simplicity, we often write (x1, x2,…, xn) instead of (x1(b), 
x2(b),…, xn(b))

•We focus on mechanisms that satisfy Individual Rationality:
- If a bidder i is a non-winner (xi(b) = 0), then pi(b) = 0

- For winners, the payment rule satisfies pi(b)  [0, bi xi(b)] for every 
bidding vector b and every i

- The auctioneer can never ask a bidder for a payment higher than her 
declared total value for what she won
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Examples of single-parameter 
environments

Describing the feasible allocations
•Single-item auctions:

• xi  {0, 1} for every i, and Σi xi = 1

•k-item unit-demand auctions
• k identical items for sale 

• xi  {0, 1}, Σi xi <= k

•Knapsack auctions
• k identical items for sale 

• For each bidder, demand of wi units

• xi  {0, 1} for every i, Σi wi xi <= k

•Public project mechanisms
• Deciding whether to build a public project (e.g., a park) 

• Only 2 feasible allocations: (0, 0, ..., 0) or (1, 1, ..., 1) 
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Allocation rules and truthful mechanisms

•Can we understand how to derive truthful mechanisms?

•Actually, we can rephrase this as:
• Suppose we are given an allocation rule x

• Can we tell if x can be combined with a pricing rule p, so that (x, p) is a 
truthful mechanism?

•This would allow us to focus only on designing the allocation 
algorithm appropriately

•Consider the single-item auction
• Allocation rule 1: Give the item to the highest bidder

• Allocation rule 2: Give the item to the 2nd highest bidder

•For rule 1, we have seen how to turn it into a truthful mechanism 
(Vickrey auction)

•For rule 2? 
• We have not seen how to do this, but we have also not proved that it 

cannot be done
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Allocation rules and truthful mechanisms

•Consider a mechanism with allocation rule x

•Fix a player i, and fix a profile b-i for the other players

•Allocation to player i at a profile b = (z, b-i) is given by xi(b) 

•Keeping b-i fixed, we can view the allocation to player i as a 
function of his bid

• xi = xi(z, b-i), if bidder i bids z

•Definition: An allocation rule is monotone if for every bidder i, 
and every profile b-i, the allocation xi(z, b-i) to i is non-decreasing in 
z

•I.e., bidding higher can only get you more stuff
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Monotonicity of allocation rules

Examples
•Back to the single-item auction

•The allocation rule that gives the item to the highest bidder is 
monotone

• If a bidder wins at profile b, she continues to be a winner if she raises her 
own bid (keeping b-i fixed)

• If she was not a winner at b, then by raising her bid, she will either 
remain a non-winner or she will become a winner 

•The allocation rule that gives the item to the 2nd highest bidder is 
not monotone

• If I am a winner and raise my bid, I may become the highest bidder and 
will stop being a winner
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Myerson’s lemma

[Myerson ’81]

•Theorem: For every single-parameter environment, 
- An allocation rule x can be turned into a truthful mechanism if and only 

if it is monotone

- If x is monotone, then there is a unique payment rule p, so that (x, p) is a 
truthful mechanism

- Subject to the constraint that if bi = 0, then pi = 0

•One of the classic results in mechanism design

•In fact, in many cases we can also compute the payments by a 
simple formula
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Myerson’s lemma

•Allocation rule x is truthful => 
Allocation rule x is monotone: forall z, y, (x(z) – x(y))(z – y) ≥ 0
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Myerson’s lemma and payment formula

•For the payment rule, we need to look for each bidder at the 
allocation function xi(z, b-i)

•For the single-item truthful auction:

• Fix b-i and let b* = maxj≠i bj

36
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1

xi(z) Facts: 
• For any fixed b-i, the allocation 

function is piecewise linear 
with 1 jump

• The Vickrey payment is 
precisely the value at which 
the jump happens

• The jump changes the 
allocation from 0 to 1 unit



Myerson’s lemma and payment formula

For most scenarios of interest

•The allocation is piecewise linear with multiple jumps

•The jump determines how many extra units the bidder wins
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xi(z)
• Suppose bidder i bids bi

• Look at the jumps of xi(z, b-i) in 
the interval [0, bi]

• Suppose we have k jumps
• Jump at z1: w1

• Jump at z2: w2 – w1

• Jump at z3: w3 – w2

• ...
• Jump at zk: wk – wk-1

z2 z3

w2

w3



Myerson’s lemma and payment formula

For most scenarios of interest

•The allocation is piecewise linear with multiple jumps

•The jump determines how many extra units the bidder wins
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Payment formula
•For each bidder i at a profile b, 
find all the jump points within [0, 
bi]
•pi(b) = Σj zj  [jump at zj]

= Σj zj  [wj – wj-1]
•The formula can also be 
generalized for monotone but not 
piecewise linear functions 

z2 z3

w2

w3



Myerson’s lemma

•Allocation rule x is truthful (and thus, monotone) => 
find appropriate payments p
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Myerson’s lemma

•Allocation rule x is truthful (and thus, monotone) => 
find appropriate payments p
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Myerson’s lemma

• Any monotone allocation rule x is truthful with payments p

bid

allocation

v

x(v)



Myerson’s lemma

• Any monotone allocation rule x is truthful with payments p
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Myerson’s lemma

• Any monotone allocation rule x is truthful with payments p
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Applying Myerson’s lemma

•Single-item auctions

•The allocation rule of giving the item to the highest bidder is 
monotone

•The payment rule of Myerson gives us precisely the Vickrey 
auction 

- Non-winners pay nothing: If a bidder i is not a winner, there is no jump 
within [0, bi] in the function xi(z, b-i)

- The winner pays (2nd highest bid)  [jump at 2nd highest bid] = 2nd highest 
bid 

•Corollary: The Vickrey auction is the only truthful mechanism for 
single-item auctions, when the winner is the highest bidder
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